
Heterogeneous Modeling of 
Embedded Software

H John Reekie
Edward Lee
UC Berkeley

Workshop on New Visions 
for Software Design and 
Productivity

SDP 2001

Nashville, Tennessee
13-14 December, 2001



Aspects of embedded software
l Interaction with physical processes

– sensors, actuators, processes
l Critical properties are not all functional

– real-time, fault recovery, power, security, robustness
l Heterogeneous

– hardware/software, mixed architectures
l Concurrent

– interaction with multiple processes
l Reactive

– operating at the speed of the environment
These features look more like hardware!



Vehicle
Dynamic

DSP

RAM mP

ASIC

I/O

DXL

Hydraulic
Actuator

Road Surface

Steering
Breaking

Acceleration
...

Discrete-Event

Continuous-Time 

Finite State
Machine

Heterogeneous models of 
computation

Model of computation is the “laws of 
physics” of component interaction



Example: Controlling an
inverted pendulum

The Furuta pendulum has 
a motor controlling the 
angle of an arm, from 
which a free-swinging 
pendulum hangs.  The 
objective is to swing the 
pendulum up and then 
balance it.

Representative of many 
embedded systems



Hierarchical Heterogeneity

Three models 
of computation 
used here.

Models by Jie Liu and 
Steve Neuendorffer

Components 
are actors with 
ports

Model of 
computation 
controls 
interaction



Domain

Domain

Domain

Therefore: Hierarchical, 
Compositional Models are Key

Actors with ports are 
better than objects 
with methods for 
embedded system 
design.



A Laboratory for Exploring 
Component Frameworks

Ptolemy II –
– Java based, network integrated
– Several frameworks implemented

– A realization of a model of 
computation is called a “domain.”  
Multiple domains can be mixed 
hierarchically in the same model.

http://ptolemy.eecs.berkeley.edu



Interface Theories (de Alfaro and 
Henzinger)

h/1g/t

p/v

g

p/t

h/1

g

Interface algebra

Component algebra

“Implements”

•Functional requirements
•Timing constraints
•Liveness and concurrency
•Refinement



Implementation Architecture -
API

l Programmer’s API exposes component 
model and an execution model
– Conventional, well-understood
– Difficult to extend, single-language

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

Ptolemy



Implementation Architecture –
Compile to Abstract Machine

l Separates programmer’s model from 
implementation model
– Extensible, retargetable, optimizable
– Supports “real” embedded systems

component

channel

event

action

transition

… ? …

time

e-machine 
Calif



Implementation Architecture -
Protocol

l Simple protocol exposes MoC “primitives”
– Distributed, cross-language, legacy support
– Clients, servers, peers

eg Nephest?tagged sequences

precise reaction

… ? …

<event>
    <parameter .../>
</event>



Conclusions

l Software experts are unlikely to solve the 
embedded software problem on their own.

l Actors with ports are better than objects 
with methods for embedded system design.

l Well-founded models of computation 
matter a great deal.

l Further research can extend the 
application of hierarchical heterogenous
models of computation in embedded 
systems.


